Tunable and sizable band gap in silicene by surface adsorption

نویسندگان

  • Ruge Quhe
  • Ruixiang Fei
  • Qihang Liu
  • Jiaxin Zheng
  • Hong Li
  • Chengyong Xu
  • Zeyuan Ni
  • Yangyang Wang
  • Dapeng Yu
  • Zhengxiang Gao
  • Jing Lu
چکیده

Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controllable by changing the adsorption coverage, with an impressive maximum band gap up to 0.50 eV. The ab initio quantum transport simulation of a bottom-gated FET based on a sodium-covered silicene reveals a transport gap, which is consistent with the band gap, and the resulting on/off current ratio is up to 10(8). Therefore, a way is paved for silicene as the channel of a high-performance FET.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors.

By using first-principles calculations, we predict that a sizable band gap can be opened at the Dirac point of silicene without degrading silicene's electronic properties with n-type doping by Cu, Ag, and Au adsorption, p-type doping by Ir adsorption, and neutral doping by Pt adsorption. A silicene p-i-n tunneling field effect transistor (TFET) model is designed by the adsorption of different t...

متن کامل

Tuning the band gap in silicene by oxidation.

Silicene monolayers grown on Ag(111) surfaces demonstrate a band gap that is tunable by oxygen adatoms from semimetallic to semiconducting type. With the use of low-temperature scanning tunneling microscopy, we find that the adsorption configurations and amounts of oxygen adatoms on the silicene surface are critical for band gap engineering, which is dominated by different buckled structures in...

متن کامل

Electrically tunable band gap in silicene

We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electr...

متن کامل

Silicene as a highly sensitive molecule sensor for NH3, NO and NO2.

On the basis of first-principles calculations, we demonstrate the potential application of silicene as a highly sensitive molecule sensor for NH3, NO, and NO2 molecules. NH3, NO and NO2 molecules chemically adsorb on silicene via strong chemical bonds. With distinct charge transfer from silicene to molecules, silicene and chemisorbed molecules form charge-transfer complexes. The adsorption ener...

متن کامل

Tunable band gap in few-layer graphene by surface adsorption

There is a tunable band gap in ABC-stacked few-layer graphene (FLG) via applying a vertical electric field, but the operation of FLG-based field effect transistor (FET) requires two gates to create a band gap and tune channel’s conductance individually. Using first principle calculations, we propose an alternative scheme to open a band gap in ABC-stacked FLG namely via single-side adsorption. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012